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Simulations in a three-dimensional numerical wave tank are performed to investigate
the shoaling and breaking of solitary waves over a sloping ridge. The numerical model
solves fully nonlinear potential flow equations with a high-order boundary-element
method combined with an explicit time-integration method, expressed in a mixed
Eulerian–Lagrangian formulation. Analyses of shoaling and breaking-wave profiles
and kinematics (both on the free surface and within the flow) are carried out. It
is observed that the transverse modulation of the ridge topography induces three-
dimensional effects on the time evolution, shape and kinematics of breaking waves.
Comparisons of two- and three-dimensional results in the middle cross-section of the
ridge, however, show remarkable similarities, especially for the shape and dynamics
of the plunging jet.

1. Introduction
Over the last two decades, many studies have been carried out to achieve a better

understanding of the breaking of surface water waves. For instance, a description
of the dynamics of breaking waves is necessary to explain the mechanisms of air–
sea interactions, such as energy and momentum transfer from wind to water and
from waves to currents, and the generation of turbulence in the upper ocean. In
nearshore areas, breaking-wave induced currents are the driving mechanism for
sediment transport, which leads to beach erosion and accretion. The study of breaking
waves is also of importance in naval and marine engineering applications, owing
to their damaging effects on ships and offshore structures in heavy seas. Despite
significant progress, the process of wave breaking has not yet been fully explained
owing to its complexity. See Peregrine (1983) and Banner & Peregrine (1993) for
reviews of wave breaking in shallow and deep water, respectively.

The present paper reports on numerical simulations aimed at describing the early
stages of wave breaking induced by changes in topography in shallow water, namely
the phenomenon of wave overturning. We concentrate on cases in which the bottom
topography induces three-dimensional effects on the flow, and we pay particular
attention to plunging breakers which are characterized by the formation of a more
prominent jet. A high-order three-dimensional numerical model solving fully nonlinear
potential flow equations is used. The potential flow approximation is justified for
initially irrotational waves (such as the solitary waves used here as incident waves),
considering the slow diffusion of vorticity from boundaries until the breaker jet touches
down. In fact, comparisons of two-dimensional numerical results with laboratory
experiments have consistently shown that the full potential theory accurately predicts
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the characteristics of wave overturning in deep water (e.g. Dommermuth et al. 1988;
Skyner 1996), as well as wave shoaling and overturning over slopes (e.g. Grilli
et al. 1994; Grilli, Svendsen & Subramanya 1997).

Most of the numerical studies of wave breaking so far have focused on two-
dimensional problems. Significant contributions in the numerical simulation of steep
fully nonlinear waves, based on potential flow theory, were made by Longuet-Higgins
& Cokelet (1976) who developed a mixed Eulerian–Lagrangian (MEL) approach
combined with a boundary integral equation (BIE) formulation. Their computations
were limited to a periodic domain in deep water and they were able to reproduce
overturning waves by specifying a localized surface pressure. Similar methods were
adopted in subsequent works, for example, by Vinje & Brevig (1981) and Baker,
Meiron & Orszag (1982) who considered the case of finite depth. Results obtained
by New, McIver & Peregrine (1985), for plunging waves over constant depth, greatly
contributed to our understanding of breaking wave kinematics. They carried out
high-resolution computations for various types of breakers and analysed in detail
the overturning motions by following fluid particle trajectories in the space, velocity
and acceleration planes. More recent two-dimensional models can accommodate both
arbitrary waves and complex bottom topography. They are directly implemented in
a physical space region where incident waves can be generated at one extremity and
reflected, absorbed or radiated at the other extremity (e.g. Cointe 1990; Grilli &
Subramanya 1996; Grilli & Horrillo 1997). For these reasons, they are often referred
to as numerical wave tanks (NWT).

Only a few attempts, however, have been made to extend the numerical simulations
to three dimensions, owing to the more difficult geometric representation and the
limitations of computer power (e.g. Boo, Kim & Kim 1994; Ferrant 1996; Celebi,
Kim & Beck 1998; Clamond et al. 2005; Fructus et al. 2005). In particular, the
problem of strongly nonlinear waves requires very accurate and stable numerical
methods, and this consequently leads to an increase of the computational cost. Xü &
Yue (1992) and Xue et al. (2001) calculated three-dimensional overturning waves in
a doubly periodic domain with infinite depth (i.e. only the free surface is discretized).
They used a high-order quadratic boundary-element method (BEM) to solve the
equations in an MEL formulation. As in Longuet-Higgins & Cokelet (1976), the
initial conditions were progressive Stokes waves and a localized surface pressure
was applied to make waves break. These authors performed a detailed analysis of
the kinematics of plunging waves and quantified the three-dimensional effects on
the flow. Broeze (1993) and Broeze, Van Daalen & Zandbergen (1993) developed a
similar method for a non-periodic domain with finite depth. They were also able to
produce the initial stages of wave overturning over a bottom obstacle.

Grilli, Guyenne & Dias (2001) proposed an accurate three-dimensional NWT for
the description of strongly nonlinear waves over complex bottom topography. This
NWT is based on an MEL explicit time stepping and a high-order BEM with third-
order spatial discretization, ensuring local continuity of the inter-element slopes.
Arbitrary waves can be generated in this NWT and, if required, absorbing conditions
can be specified on lateral boundaries. Although an application to the shoaling of
a solitary wave up to overturning was shown, these authors focused more on the
derivation and validation of their numerical model and methods rather than on
the physical implications of results. Other applications of this NWT to nonlinear
wave processes can be found in Guyenne, Grilli & Dias (2000) for the modelling of
wave impact on a vertical wall, in Brandini & Grilli (2001a, b) for the modelling of
freak wave generation due to directional wave focusing, and in Grilli, Vogelmann &
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Watts (2002) for the modelling of tsunami generation by submarine mass failure.
For further information on boundary-integral methods, especially in applications to
three-dimensional free-surface flows, see Tong (1997).

In the present paper, the breaking of solitary waves over a sloping ridge is
investigated in more detail using the model of Grilli et al. (2001), with some recent
improvements and extensions. The initial solitary wave is a numerically exact solution
computed by Tanaka’s method (see Tanaka 1986). Because of the complexity of the
problem and the high computational cost, our study of three-dimensional breakers is
restricted to a limited number of configurations of the bottom geometry, domain size
and incident wave height. New results are obtained for the velocity and acceleration
fields during wave overturning, both on the free surface and within the flow. As
before, no smoothing of the solution is required to suppress spurious waves at any
time in the computations. Since we consider the three-dimensional problem in shallow
water and wave breaking induced by topographical effects, our numerical study can
be viewed as complementary to that of Xue et al. (2001).

The paper is organized as follows. In § 2, we review the mathematical formulation
of the wave model. The derivation and method of computation of the internal
velocity and acceleration fields are also presented. We review the numerical methods
for temporal and spatial discretizations in § 3 and indicate where these have been
improved as compared to earlier formulations of the model. Finally, cases of solitary
waves propagating and overturning over a sloping ridge are analysed in § 4.

2. Mathematical formulation
Equations for a fully nonlinear potential flow with a free surface are listed below.

The velocity potential φ(x, t) is introduced to describe an inviscid irrotational flow in
Cartesian coordinates x = (x, y, z) with z the vertical upward direction (z = 0 at the
undisturbed free surface), and the fluid velocity is expressed as u = ∇φ.

The continuity equation in the fluid domain Ω(t) with boundary Γ (t) is Laplace’s
equation

∇2φ = 0. (2.1)

The corresponding three-dimensional free-space Green’s function is defined as

G(x, xl) =
1

4πr
with

∂G

∂n
(x, xl) = − 1

4π

r · n
r3

, (2.2)

where r = |r| = |x − x l | is the distance from the source point x to the field point xl

(both on boundary Γ ), and n is the outward unit vector normal to the boundary at
point x.

Green’s second identity transforms (2.1) into the BIE

α(xl)φ(xl) =

∫
Γ

[
∂φ

∂n
(x)G(x, xl) − φ(x)

∂G

∂n
(x, xl)

]
dΓ, (2.3)

where α(x l) = (1/4π)θl and θl is the exterior solid angle at point xl .
The boundary is divided into various parts satisfying different boundary conditions

(figure 1). On the free surface Γf (t), φ satisfies the nonlinear kinematic and dynamic
boundary conditions in the MEL formulation,

DR
Dt

= u = ∇φ, (2.4)
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Figure 1. Sketch of the computational domain for the three-dimensional NWT.

Dφ

Dt
= −gz + 1

2
∇φ · ∇φ − p

ρ
, (2.5)

respectively, with R being the position vector of a fluid particle on the free surface,
g the acceleration due to gravity, p the atmospheric pressure, ρ the fluid density and
D/Dt = ∂/∂t + ∇φ · ∇ the Lagrangian time derivative. The effects of surface tension
are neglected.

Incident waves can be generated in the NWT by simulating a wavemaker at the
‘open sea’ boundary Γr1 (Brandini & Grilli 2001a, b). Here, however, we directly
specify the incident wave at t = 0. On the bottom Γb and other fixed parts of the
boundary referred to as Γr2, a no-flow condition is prescribed as

∂φ

∂n
= 0. (2.6)

Once the BIE (2.3) is solved, the solution within the domain can be evaluated from
the boundary values. Using (2.3), the internal velocity is given by

u(x l) = ∇φ(xl) =

∫
Γ

[
∂φ

∂n
(x) Q(x, xl) − φ(x)

∂ Q
∂n

(x, xl)

]
dΓ, (2.7)

with

Q(x, xl) =
1

4πr3
r,

∂ Q
∂n

(x, xl) =
1

4πr3

[
n − 3(r · n)

r
r2

]
, (2.8)

and r denoting the distance from the boundary point x to the interior point x l . Note
that the coefficient α(xl) reduces to unity for interior points.

Similarly, we can also derive the internal Lagrangian acceleration

Du
Dt

=
D

Dt
∇φ =

∂

∂t
∇φ + (∇φ · ∇)∇φ, (2.9)

where the first term on the right-hand side, corresponding to the local acceleration, is
given by

∇∂φ

∂t
(x l) =

∫
Γ

[
∂2φ

∂t∂n
(x) Q(x, xl) − ∂φ

∂t
(x)

∂ Q
∂n

(x, xl)

]
dΓ, (2.10)

and the last term is computed using (2.7) and differentiating ∇φ. This requires
calculating the spatial derivatives for all components of Q and ∂ Q/∂n. Their
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expressions are

∂Qi

∂xj

=




3

4πr5
rirj , i �= j

1

4πr3

(
3

r2
r2
i − 1

)
, i = j,

(2.11)

∂

∂xj

(
∂Qi

∂n

)
=




3

4πr5

[
rjni + rinj − 5

r2
(r · n)rirj

]
, i �= j

3

4πr5

[
r · n + 2rini − 5

r2
(r · n)r2

i

]
, i = j,

(2.12)

where i, j refer to the spatial dimensions and ri stands for the ith component of r .
The quantities ∂φ/∂t and ∂2φ/∂t∂n in (2.10) also satisfy a BIE similar to (2.3)

for φ and ∂φ/∂n. In fact, the calculation of their values on the free surface is done
as part of the second-order time-integration method outlined in § 3.1. Note that the
results presented here are restricted to a no-flow condition on all lateral boundaries
Γr1 and Γr2. For the use of ‘snake’ flap wavemaker and absorbing piston boundaries
at extremities of the NWT, see Brandini & Grilli (2001a, b) and Grilli et al. (2002).

3. Numerical methods
Details of the implementation and performance of the three-dimensional NWT are

given in Grilli et al. (2001). We only summarize here the methods for temporal and
spatial discretizations and indicate some recent improvements.

3.1. Time integration

A second-order explicit scheme based on Taylor series expansions is used to update
the position R and velocity potential φ on the free surface, as

R(t + �t) = R + �t
DR
Dt

+
�t2

2

D2 R
Dt2

+ O(�t3), (3.1)

φ(t + �t) = φ + �t
Dφ

Dt
+

�t2

2

D2φ

Dt2
+ O(�t3), (3.2)

where �t is the varying time step and all terms in the right-hand sides are evaluated
at time t .

First-order coefficients in these Taylor series are given by (2.4) and (2.5), which
requires the calculation of φ, ∂φ/∂n at time t on the free surface. Second-order
coefficients are obtained from the Lagrangian time derivative of (2.4) and (2.5), which
also requires the calculation of ∂φ/∂t , ∂2φ/∂t∂n at time t . Since the BIEs to be solved
in both cases correspond to the same boundary geometry, we must discretize and
assemble the resulting linear system only once. Other advantages of this time-stepping
scheme are of being explicit and using spatial derivatives of the field variables in the
evaluation of values at t + �t , which provides a good stability of the computed
solution.

The time step �t in (3.1) and (3.2) is adaptively selected at each time as

�t = C0

�rmin

√
gh

, (3.3)

where C0 denotes the Courant number, �rmin is the instantaneous minimum distance
between two neighbouring nodes on Γf and h is a characteristic depth.
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Global accuracy of the numerical scheme can be assessed at any time by checking
the conservation of volume

V =

∫
Γ

znz dΓ, (3.4)

and total energy

E = 1
2
ρ

∫
Γ

(
φ

∂φ

∂n
+ gz2nz

)
dΓ, (3.5)

where the first and second terms represent the kinetic and potential contributions of
the flow, respectively, and nz is the vertical component of the unit normal vector.

Grilli et al. (2001) found that the errors on volume and energy conservation reach a
minimum for C0 � 0.45. This implies, in particular, that �t could not be imposed too
small, otherwise numerical errors would accumulate faster when solving the BIEs at
intermediate times. It is emphasized that no smoothing/filtering was used to stabilize
the solution in all cases we considered.

3.2. Boundary discretization

A high-order three-dimensional BEM is used to solve numerically the BIEs for φ and
∂φ/∂t . The boundary is discretized into collocation nodes, defining two-dimensional
elements for local interpolations of the solution in between these nodes. Thus, within
each element, the boundary geometry and field variables are interpolated using
polynomial shape functions. Generally, isoparametric elements can provide a high-
order approximation within their area of definition, but only offer C0 continuity of the
geometry and field variables at nodes in between elements. A robust treatment requires
definition of elements which are both high-order within their area of definition and
at least locally C2 continuous at their edges. For this purpose, an extension of the
so-called middle-interval-interpolation method introduced by Grilli & Subramanya
(1996) has been developed in the three-dimensional model. The boundary elements
are 4 × 4-node quadrilaterals associated with bi-cubic shape functions. Only one out
of the nine sub-quadrilaterals so defined is used for the interpolation, depending on
the location of the element with respect to the edges of the NWT.

Double and triples nodes are introduced to specify the BIEs at intersections of the
boundary (i.e. at edges and corners of the NWT). This makes the model especially
suitable for problems involving wave–body interactions. The discretized boundary
integrals are evaluated for each collocation node by numerical integration. When
the collocation node does not belong to the integrated element, a standard Gauss–
Legendre quadrature is applied. When it belongs to the element, the distance r

in the Green’s function and in its normal gradient vanishes at one of the nodes
of the element. For such singular situations, a method of singularity extraction is
used based on polar coordinate transformations. Tangential derivatives in (3.1) and
(3.2) are calculated by defining fourth-order 5 × 5-node elements (Grilli et al. 2001).
Fochesato, Grilli & Guyenne (2005) proposed more accurate and general expressions
of these derivatives, which are used in the present applications.

The linear algebraic system resulting from the discretization of the BIE (2.3) for φ

(and ∂φ/∂t) is in general dense and non-symmetric. Since the total number of nodes
NΓ can be very large in three dimensions, the solution by a direct method of order N3

Γ

is prohibitive. As in Xü & Yue (1992) and Xue et al. (2001), a generalized minimal
residual (GMRES) algorithm with preconditioning is used to solve the linear system
iteratively.
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Figure 2. Bottom topography and its initial discretization for the shoaling of a solitary wave,
modelled as a ridge with a 1: 15 slope in the x-direction and a lateral sech2(ky ′) modulation.
The configuration k = 0.25 is represented here.
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Figure 3. Transverse variations of the bottom topography as sech2(ky ′) for k = 0.1,
0.17, 0.25, 0.34, 0.5 (from moderately to rapidly decaying transverse tails, respectively).

4. Numerical results
In this section, the numerical model described above is used to compute the shoaling

and breaking of solitary waves over a sloping ridge. We present results on the three-
dimensional evolution of wave profiles and kinematics (both on the free surface
and within the flow). Three-dimensional effects on wave breaking are examined by
varying the transverse geometry of the bottom ridge. Comparisons between two- and
three-dimensional wave breaking are performed. We also examine the sensitivity of
computations to domain size, and perform computations for varying incident wave
heights.

4.1. Solitary wave breaking over a sloping ridge: dependence on bottom variations

In reviewing the literature, we found that various methods were used for inducing
wave breaking in numerical simulations, depending on the physical situation to be
simulated. For instance, a localized surface pressure was applied over water of infinite
or constant depth to increase wave energy gradually, as happens under wind action, or
an initial periodic wave was specified with a sufficiently large (usually non-physical)
amplitude so that the computation always rapidly evolves towards breaking. Here,
for shallow water-wave transformations, breaking occurs as a result of shoaling over
a non-uniform bottom topography, as it is typically the case for breaking waves on
beaches.

More specifically, for the purpose of inducing three-dimensional breaking, we specify
a somewhat idealized sloping bottom topography in our NWT. As shown in figure 2,
the water depth is constant in the first part of the tank (z = −h0). A sloping ridge starts
at x ′ = 5.225, with a 1: 15 slope in the middle cross-section and a transverse modulation
of the form sech2(ky ′). Primes hereinafter indicate non-dimensional variables based
on long-wave theory, i.e. lengths are divided by h0 and times divided by

√
h0/g. In

computations, we will successively set k = 0.1, 0.17, 0.25, 0.34, 0.5, which correspond
to different amplitudes for the transverse tails of the ridge (figure 3). Our goal is
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Figure 4. Two-dimensional sketch of the experimental set-up. The initial condition is a
numerically exact solitary wave of height H0. It is computed by Tanaka’s method and is
initially specified in the region of constant depth h0. The vertical scale is exaggerated.

to examine three-dimensional depth-induced effects on the dynamics and kinematics
of breaking waves. Note that, in this paper, we will restrict ourselves to sloping
bottom geometries because they represent a good compromise between geometric
complexity and computational effort. As shown below, the three-dimensional wave
breaking occurring in such configurations already exhibits significant differences in
time evolution and wave profiles as compared to the typical two-dimensional wave
breaking over a plane slope.

The computational domain is of width 8h0 in the y-direction and is truncated at
x ′ = 19 in the x-direction, with minimum depth z′ = −0.082 in the middle (y ′ = 0).
Note, this truncation is introduced to reduce the size of the domain, and hence
computational cost, since wave overturning always occurs in deeper water for the
specified incident waves and bottom topography. We verified that this does not
influence results significantly in the overturning region of the wave, by comparing
results for different truncations or no truncation at all. The initial condition is a two-
dimensional fully nonlinear solitary wave of height H ′

0 = 0.6 and speed c′
0 = 1.25 with

the crest located at x ′
0 = 5.785 for t ′ = 0 (figure 4). This corresponds to a numerically

exact solution of potential flow theory computed by Tanaka’s (1986) method. Such
a wave should propagate without change of shape and speed on uniform depth in
our NWT (Grilli et al. 2001). The height of the incident solitary wave is chosen large
enough for breaking to occur early in the computations, which saves computational
time. In practice, this could correspond to the situation where the wave has already
propagated quite a long distance from offshore. The imposed (maximum) slope of
the bottom is also fairly steep in order to generate a plunging breaker, as it is well
known that the type of breaking depends on beach slope in shallow water (e.g. Grilli
et al. 1997). Note that the choice of solitary waves is motivated by their intrinsic
relevance as a good approximation of both tsunamis and long nearshore waves.

The initial discretization for the bottom and free surface consists of 50 × 20
quadrilateral elements in the x- and y-directions respectively (�x ′

0 = 0.38 and
�y ′

0 = 0.4). The lateral boundaries have grid lines connecting the edge nodes of
the bottom and free surface, with four elements specified in the vertical direction.
Consequently, the total number of nodes is NΓ =2862 and the initial time step is set
to �t ′

0 = 0.171 for C0 = 0.45. Computations are first performed in this discretization
as long as errors remain acceptable (i.e. less than 0.05% or so on wave mass and
energy). A two-dimensional regridding to a finer resolution is then applied at a
time when the wave profile is still single-valued. The discretization is increased to
60 × 40 quadrilateral elements in the portion 8 � x ′ � 19 of the bottom and free
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Figure 5. Wave profiles for (a) k = 0.1, (b) k = 0.17, (c) k =0.25, (d) k = 0.34 and (e) k = 0.5
at t ′ = 8.926. In all cases, the initial solitary wave is of height H ′

0 = 0.6.

surface (�x ′ = 0.18, �y ′ = 0.2 and NΓ = 6022). The procedure consists in regridding
over large areas of the discretization at a time when errors are still very small,
which guarantees the accuracy of the regridded solution. For instance, regridding was
applied at t ′ = 4.900 for k = 0.25, when errors on volume and energy conservation
are 0.010% and 0.013%, respectively. We chose similar regridding times for the other
values of k.

Figure 5 shows the wave profiles for k = 0.1, 0.17, 0.25, 0.34, 0.5 at the same time
t ′ = 8.926, whereas figure 6 shows the same set of wave profiles in the latest stages
of overturning before the computations break down. This typically occurs when two
surface nodes propagate too close to each other, in the tip of the plunging jet, and at a
time which depends on the selected discretization and numerical parameters. Figure 7
plots the time evolution of numerical errors on the conservation of energy E and
volume V , for k = 0.1, 0.17, 0.25, 0.34, 0.5, after the regridding times. The reference
energy E0 and volume V0 are chosen at these times because the computational
domain is reduced to 8 � x ′ � 19 when regridding and so it would not be consistent
to compute errors with respect to values at t ′ = 0 for which the domain is larger.
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Figure 6. Wave profiles for (a) k = 0.1 (t ′ = 8.958), (b) k = 0.17 (t ′ = 8.926), (c) k = 0.25
(t ′ =9.142), (d) k =0.34 (t ′ = 9.427) and (e) k = 0.5 (t ′ =9.243).
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Figure 7. Numerical relative errors on the conservation of (a) energy E and (b) volume V
as functions of time, after the instant when the free surface regridding is applied, for k = 0.1
(solid line), k = 0.17 (dashed line), k = 0.25 (solid line, circles), k = 0.34 (solid line, stars), k = 0.5
(solid line, triangles).
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Dimension s k t ′
B x ′

B z′
B h′

B z′
B/h′

B

2 0.028 – 11.501 20.457 0.754 0.573 1.316
2 0.052 – 8.570 16.885 0.709 0.389 1.823
2 0.067 – 7.629 15.752 0.680 0.298 2.282
3 0.067 0.10 7.661 15.802 0.685 0.295 2.322
3 0.067 0.17 7.757 15.904 0.693 0.288 2.406
3 0.067 0.25 7.890 16.093 0.706 0.275 2.567
3 0.067 0.34 8.147 16.470 0.719 0.250 2.876
3 0.067 0.50 8.639 17.100 0.740 0.208 3.558

Table 1. Bottom slope s, time t ′
B , position of maximum surface elevation (x ′

B, z′
B ), water depth

h′
B and breaker height ratio z′

B/h′
B at the breaking point at y ′ = 0 for k =0.1, 0.17, 0.25, 0.34,

0.5. For comparison, two-dimensional results corresponding to the bottom slopes at y ′ = ± 4,
± 2, 0 in the three-dimensional case k =0.25, are also shown.

In doing so, the numerical errors that we obtain still give a good estimate of
the accuracy of our computations since, as mentioned earlier, the solution at the
regridding time should be little affected by errors in the initial discretization. In all
cases, we see that both types of error remain small up to the latest computed times.
For instance, for k = 0.25, the errors on E and V only reach 0.112% and 0.025%,
respectively, at t ′ =9.142.

We see in figure 6 that the larger the value of k, the more localized the breaking
process in the middle section (near y ′ = 0). In all cases except k = 0.5, the computations
reach an advanced stage of wave overturning characterized by a prominent plunging
jet. For k =0.1, the bottom exhibits small transverse variations and therefore the
resulting wave breaking is almost invariant by translation along the y-axis (figure 6a).
For a more localized ridge (k = 0.5), there is a stronger transverse modulation of
the wave crest: a much lower crest develops around y ′ = 0. In all the configurations,
we could have exploited the symmetry of the problem, but this was not done for
practical reasons, since our numerical model was developed and implemented for
arbitrary bottom topographies. This option might be considered in the future to
reduce the computational effort. Nevertheless, it is comforting to see that the solution
remains symmetric about the centre plane.

Table 1 displays the time t ′
B and position of maximum surface elevation (x ′

B, z′
B) at

the breaking point at y ′ =0 for the five values of k. The breaking point corresponds
to the instant when the front face of the wave reaches a vertical tangent before the
wave crest overturns. We observe that t ′

B , x ′
B and z′

B increase with k (as suggested in
figure 5), and these differences in time evolution and wave shape are attributable to
wave refraction and focusing over the ridge, as discussed below.

Figure 8 shows a comparison of breaker shapes computed at y ′ = 0 with the three-
dimensional model and the two-dimensional fully nonlinear potential flow model of
Grilli & Subramanya (1996) and Grilli et al. (1997). The latter model, which has been
extensively tested and validated against both theoretical and experimental results, is
run for a bottom slope s = 1:15, corresponding to the geometry of the cross-section
y ′ = 0 in the three-dimensional NWT. The same incident wave, i.e. a ‘Tanaka’ solitary
wave of height H ′

0 = 0.6 and speed c′
0 = 1.25, is specified in both models. Note, a finer

resolution is used in the x-direction in the two-dimensional model (�x ′
0 = 0.1). The

comparison is shown for the five values of k, at slightly different times, for which the
two- and three-dimensional waves have similar free-surface profiles near the breaker
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Figure 8. Comparison of two-dimensional (dashed line) and three-dimensional (solid line)
results at similar stages of wave overturning: (a) t ′ = 8.248, 8.299 (k = 0.1), (b) t ′ = 8.248, 8.397
(k = 0.17), (c) t ′ = 8.248, 8.563 (k = 0.25), (d) t ′ = 8.248, 8.796 (k = 0.34), (e) t ′ = 8.218, 9.243
(k = 0.5), for the two- and three-dimensional waves, respectively. For the three-dimensional
results, only the vertical cross-section at y ′ =0 is represented. The two-dimensional wave profile
is shifted forward by δx ′ = 0.086 in (a), 0.233 in (b), 0.484 in (c), 0.816 in (d) and 1.443 in
(e) along the x-axis.

jets. Furthermore, to allow for a direct comparison of breaker jet geometry, the two-
dimensional profiles are shifted forward by δx ′ (δx ′ = 0.086, 0.233, 0.484, 0.816, 1.443
for k = 0.1, 0.17, 0.25, 0.34, 0.5, respectively), to make them approximately coincide
with the three-dimensional profiles. For k = 0.1, figure 8(a) shows that the two- and
three-dimensional wave profiles are quite close to each other. As k increases, however,
the three-dimensional wave profiles exhibit a higher back slope and a more arched
front face than the two-dimensional profiles. Similar observations were made by Xue
et al. (2001) for periodic deep-water breakers, when considering domains of large
width.

Values of δx ′ given above clearly indicate that wave breaking takes longer to develop
in three dimensions than in two dimensions, for the specified maximum bottom slope.
Also, the more three-dimensional the bottom topography (i.e. the larger k), the longer
it takes for breaking to develop. The differences in spatial and temporal evolutions of
the two- and three-dimensional waves are also illustrated by the values of x ′

B (and t ′
B)

given in table 1 for s = 1: 15 � 0.067. Two-dimensional results for s = 0.028 and 0.052,
corresponding to the bottom slopes at y ′ = ± 4 and ± 2 in the three-dimensional case
with k = 0.25, are also given in table 1. In these two-dimensional cases with smaller
slopes, wave breaking occurs later than in three-dimensions (the difference in x ′

B
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is δx ′
B = 0.792 for s =0.052, and it is δx ′

B = 4.364 for s = 0.028). These significant
differences for wave shoaling and breaking over different slopes explain why, in three
dimensions, (i) wave breaking is delayed as k increases, and (ii ) the middle portion
of the wave takes longer to break than in a purely two-dimensional configuration.

Values of z′
B in table 1 also show that, the larger the value of k, the stronger

the wave focusing towards the centre owing to the transverse depth variations. This
is supported by figure 8, which clearly shows the increased elevations of three-
dimensional waves relative to the two-dimensional solution at y ′ = 0. At the same
time, since wave breaking takes longer to develop and occurs for smaller depth, as k

increases, this results in larger values of the breaker height ratio z′
B/h′

B . The values
of z′

B/h′
B that we obtained (for three-dimensional waves) are in the range of typical

values for plunging breakers (according to e.g. Grilli et al. 1997), and this is clearly
seen in figure 6. Note, however, that we were unable to compute the solution until an
advanced stage of wave overturning for k =0.5, which gives the largest ratio z′

B/h′
B

in table 1.
The low global errors found for these computations (figure 7) give little indication

as to how well the more important highly energetic parts of the flow such as the
plunging jets are modelled. In particular, the calculation of particle accelerations is
very sensitive to local variations of the boundary geometry and, therefore, inaccuracies
can be observed in the overturning region. We have experienced such errors in our
computations even though global errors are quite small. We believe, however, these
errors have little impact on the overall solution, since our results show remarkable
similarities when comparing two- and three-dimensional wave breaking. Moreover,
we have obtained satisfactory results for velocity and accelerations fields in smooth
areas of the free surface (see figures 12b and 13b).

4.2. Solitary wave breaking over a sloping ridge: configuration k = 0.25

We now focus our attention on the case k = 0.25 and conduct a more detailed study
of three-dimensional wave overturning. This case is of particular interest because, as
shown in figure 6 (c), the solution exhibits a well-developed localized plunging jet and
the computation can be run over a sufficiently long time before breaking down. As
the overturning process propagates laterally to the sidewalls (y ′ = ± 4), the projected
water forms a tongue-shaped jet, which is clearly a three-dimensional effect. The
transverse variation of the jet is smooth, as is that of the bottom topography.

Computations break down a few time steps after t ′ =9.142 owing to node con-
vergence in the plunging jet and because elements in this region become too distorted;
results, however, remain accurate until that stage (figure 7). We point out that
the numerical instabilities due to node convergence (i.e. situations of quasi-singular
integrals in the BIEs; see e.g. Grilli & Subramanya 1994) are somewhat different from
the so-called sawtooth instabilities. These have been commonly observed in numerical
simulations of water waves and are removed by means of smoothing techniques (e.g.
Longuet-Higgins & Cokelet 1976; Xue et al. 2001). Such sawtooth instabilities have
never been observed in all cases studied here. Incidentally, the present calculations
span several hundred time steps and the CPU time is O(10) min per time step for
NΓ = 6022, on a single processor of a Compaq Alpha GS160 computer.

Figure 9 shows the vertical cross-sections of the free surface in the middle (y ′ = 0)
and at the sidewall (y ′ = ± 4) locations in the tank, for times t ′ = 7.890, 8.244, 8.498,
8.827, 9.142. Because of the large differences in depth variations and resultant wave
focusing, the wave profile at y ′ = 0 has developed well into overturning, with a
prominent plunging jet, while the profile at y ′ = ± 4 remains single-valued. Figure 9(a)
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Figure 9. k = 0.25. Vertical cross-sections along the x-axis, in the middle (a) y ′ = 0 and at
the sidewalls (b) y ′ = ± 4: wave profiles at t ′ =7.890, 8.244, 8.498, 8.827, 9.142 (left to right,
solid line); particle paths (dashed line). The straight line represents the bottom profile. The
resolution in the x-direction is 61 particles and particle numbers are indicated at the beginning
of each path.

shows that the wave reaches its maximum height H ′ � 0.71 near the breaking point
(t ′ =7.890) with the crest located at x ′ = 16.2. The surface elevation then decreases
gradually as the jet of water is projected forward. More precisely, as indicated in
table 3, the wave height still increases slightly beyond the breaking point to reach
a maximum around t ′ =8.827. We point out that the problem of solitary wave
focusing, e.g. over a ridge as presented here, can be analysed in the framework of ray
theory. Miles (1977) and Pedersen (1994) applied such a theory to solitary waves, and
examined the transverse propagation of disturbances on solitary waves. It would be
of interest, in the future, to compare the present results with these theories.

The sequence of wave profiles in figure 9(a) is in good qualitative agreement with
existing results of two-dimensional numerical simulations of overturning waves (e.g.
on finite depth by New et al. 1985; in deep water by Dommermuth et al. 1988; over
slopes by Grilli et al. 1997). This supports the standard view that the general features
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Figure 11. k = 0.25. Comparison of two-dimensional (dashed line) and three-dimensional
(solid line) results at similar stages of wave overturning: t ′ = 8.560, 8.889 for the two-,
three-dimensional wave, respectively. The two-dimensional wave profile is shifted forward
by δx ′ = 0.514 along the x-axis.

of wave overturning do not vary much with the physical situation that has caused it.
A more detailed comparison of wave-breaking profiles obtained using the two- and
three-dimensional numerical models for k = 0.25 is shown in figures 10 and 11. At a
given time, the crests of both two- and three-dimensional waves are roughly located
at the same x-location. As expected from the discussions in § 4.1, however, in figure
10, breaking occurs earlier in two dimensions owing to differences in wave evolution
between the middle and the sides of the tank in the three-dimensional case. Figure 11
shows the same comparison, but for similar late stages of wave overturning, occurring
at different times in the two models (the two-dimensional wave profile is shifted by
δx ′ = 0.514 to allow for a better comparison). Surprisingly, at this stage, the breaker
jets of the two- and three-dimensional waves match almost perfectly. Finally, we also
found that we can fit ellipses to the interior of the two- and three-dimensional jets
(i.e. ‘the pipe’) in figure 11 which, as in the local analytical solution of New (1983),
come out approximately with a

√
3 aspect ratio and are inclined at about 30◦.

4.3. Kinematics of three-dimensional overturning waves: configuration k = 0.25

We analyse the effects of three-dimensional breaking on wave kinematics for k = 0.25.
We anticipate that the bottom topography is an important factor governing the in-
ternal dynamics. As shown above, the solitary wave starts overturning in the middle of
the domain where the bottom slope is the steepest and so we should expect significant
variations of the wave kinematics in this part of the domain. In our computations,
the particle velocity u = ∇φ = (ux, uy, uz) and acceleration a = Du/Dt = (ax, ay, az) on
the free surface are expressed using polynomial interpolation in a local curvilinear
coordinate system defined at each node (see Grilli et al. 2001; Fochesato et al. 2005).
For interior points, we use the integral formulae (2.7) and (2.9). Because of this
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Figure 12. k = 0.25. Surface velocity portraits in the (ux, uz)-plane for (a) y ′ = 0 and
(b) y ′ = ± 4 at t ′ = 7.890, 8.244, 8.498, 8.827, 9.142: velocity curves (solid line); regions
of significant numerical error (dashed-dotted line); particle trajectories (dashed line). The
innermost/outermost curve corresponds to the earliest/latest time. Particle numbers are
indicated at the end of each trajectory.

integral formulation, the calculation of field variables is expected to be more accurate
within the domain than on its boundary, where differentiation is used.

Following New et al. (1985), we found it useful to represent wave kinematics on
the free surface using velocity and acceleration plane portraits. Figure 12 shows the
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t ′ |u′|max (u′
max )x (u′

max )y (u′
max )z |a′|max (a′

max )x (a′
max )y (a′

max )z

7.890 1.466 1.454 0.000 0.186 2.503 0.818 0.000 −2.365
8.244 1.683 1.682 0.000 −0.054 2.745 2.608 0.000 −0.858
8.498 1.784 1.766 0.000 −0.251 5.235 3.337 ±2.021 −3.491
8.827 1.860 1.771 0.000 −0.569 5.311 3.063 ±3.606 −2.413
9.142 1.950 1.720 0.000 −0.919 5.769 5.635 ±0.476 −1.144

Table 2. k = 0.25. Maximum values of the surface velocity/acceleration magnitudes and
corresponding components at t ′ = 7.890, 8.244, 8.498, 8.827, 9.142. Note that, owing to the
symmetry about y ′ = 0, there are two values of same magnitude and opposite signs for (a′

max )y
(and y ′

amax
in table 3).

t ′ z′
max x ′

zmax
(z′/h′)max x ′

umax
y ′

umax
z′
umax

x ′
amax

y ′
amax

z′
amax

7.890 0.7062 16.094 2.564 16.242 0.000 0.637 16.242 0.000 0.637
8.244 0.7088 16.486 2.843 16.787 0.000 0.614 16.705 0.000 0.427
8.498 0.7099 16.802 3.111 17.176 0.000 0.548 17.074 ±0.934 0.600
8.827 0.7107 17.175 3.495 17.694 0.000 0.425 17.380 ±1.713 0.641
9.142 0.7101 17.556 3.991 18.307 0.000 0.195 18.066 ±1.354 0.446

Table 3. k =0.25. Position (x, z) and height to depth ratio for the maximum surface elevation,
and position (x, y, z) of maximum velocity/acceleration magnitudes on the free surface at
t ′ = 7.890, 8.244, 8.498, 8.827, 9.142.

time evolution of particle velocities in the (ux, uz)-plane for y ′ = 0 and y ′ = ± 4. For
comparison, the linear phase speed in shallow water c =

√
gh0 denotes the unit speed in

our non-dimensionalization. Because of the moderate resolution in our computations
and for graphical clarity purpose, we used cubic spline interpolation to estimate the
velocity values between nodes. This is consistent with the order of approximation
specified in our BEM method for space discretization. A single curve represents
particle velocities on the free surface at a given time. The innermost/outermost curve
corresponds to the earliest/latest time. Regions of larger numerical errors around the
tip of the jet are represented by a dashed-dotted line.

We note that the velocity profiles for y ′ = 0 look very similar to those obtained
by New et al. (1985) for two-dimensional periodic breakers on constant depth. In
particular, the most prominent feature of the diagram is the development of a jet
in the bottom right-hand corner. The corresponding particles are approaching free
fall and have the largest velocities with an almost-constant horizontal component.
The accumulation of particles near the origin indicates the absence of motion as we
move away from the crest of the overturning solitary wave. The maximum velocity
occurs near the tip of the plunging jet and is almost 2c at t ′ = 9.142 (table 2). This
is roughly 1.5 times c0 the initial speed of the solitary wave. Velocities at y ′ = ± 4
do not exceed c much (figure 12 b). The corresponding diagram is close to that of a
steadily progressing solitary wave.

Similarly, figure 13 plots the time evolution of particle accelerations in the (ax, az)-
plane for y ′ = 0 and y ′ = ± 4. Significant numerical errors are observed for particles
located inside the breaking loop and around the tip of the jet. Such errors were
discussed in § 4.1 and can be reduced by increasing the grid resolution. It can be seen in
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Figure 13. k = 0.25. Surface acceleration portraits in the (ax, az)-plane for (a) y ′ =0 and
(b) y ′ = ± 4 at t ′ =7.890, 8.244, 8.498, 8.827, 9.142: acceleration curves (solid line); regions of
significant numerical error (dashed-dotted line). Particles are also marked.

figure 13(a) that two-dimensional magnitudes (i.e. in the vertical plane) as high as
almost 5g occur at t ′ = 9.142 on the front face where the curvature is large. At the
sidewalls, the non-overturning free surface exhibits accelerations typically less than g

(figure 13b). Larger numerical inaccuracies occur for the last recorded time, owing to
distortions of elements on the sidewalls as the wave becomes steeper at the sides. As
pointed out in Peregrine, Cokelet & McIver (1980), at any point on the free surface,
the particle acceleration is given by the equation of motion

Du
Dt

= − 1

ρ
∇p + g. (4.1)
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Figure 14. k = 0.25. Internal velocity components (ux, uz) at (a) t ′ = 8.542 and (b) t ′ = 9.142.
In the (x, z)-plane, the maximum velocity magnitude is |u′|max = 1.756 at t ′ = 8.542 and
|u′|max = 1.974 at t ′ =9.142.

Since the pressure gradient is normal to the surface and g is downwards, the general
direction (e.g. off- or on-shore) of Du/Dt is determined by the slope of the surface.
This property is reproduced well here and generalizes to the acceleration field within
the flow (see below).

We also note that, while the maximum velocity on the surface occurs in the cross-
section y ′ = 0 (with zero y-component as in the two-dimensional case), the maximum
acceleration exhibits a significant transverse component ay , which can be of the same
order of magnitude as ax or az (see Tables 2 and 3). Total accelerations (i.e. three-
dimensional) as high as almost 6g are thus observed at t ′ = 9.142. We point out that
two maxima are observed for the acceleration field, which are located symmetrically
about y ′ = 0 and with components ay of opposite signs. These are directed towards
the sides, i.e. ay > 0 (respectively ay < 0) for y > 0 (respectively y < 0). It seems
that these two maxima occur on the front face of the wave, near the portion of the
wave crest which has just started overturning at the sides. The transverse acceleration,
being moderately large and directed to the sides, may be related to the fact that, since
the wave gains height more rapidly at the centre, there is extra pressure (hydrostatic
to the first approximation) which accelerates water away from the centreline in the
main body of the wave. In the lower portions at the front of the wave, this may not
be so, since the low front of the wave can travel faster in the deeper water at the
sides of the tank, so that transverse acceleration there will be towards the lower front
of the wave at the centre. Indeed, as discussed below, figures 16–18 show that water
has been accelerated towards the centre.

Figure 14 displays the internal velocity components (ux, uz) in the middle (y ′ = 0)
at t ′ = 8.542 and t ′ = 9.142 after the breaking point. The interior points are chosen
equally spaced by �x ′

i = 0.10 and �z′
i =0.05 along the x- and z-axes, respectively.

Outside the overturning region, the quasi-uniformity of the velocity distribution
along the depth is clearly shown. This is expected for a very long wave such as a
solitary wave. There is also an overall uniformity in direction parallel to that of wave
propagation. Velocities increase and exhibit more variations in the vertical direction
as we enter the breaker jet, as a result of flow focusing towards the jet in the vertical
plane.

By contrast, the corresponding acceleration components (ax, az) have appreciable
values only in the region adjacent to the wavefront face (figure 15). The existence of
such a region is necessary to accelerate the water near the surface, which is projected
forward in a jet. In particular, large variations in acceleration are observed for particles
in the close neighbourhood of the surface and within ‘the pipe’ where the curvature
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Figure 15. k = 0.25. Internal acceleration components (ax, az) at (a) t ′ = 8.542 and (b) t ′ =
9.142. In the (x, z)-plane, the maximum acceleration magnitude is |a′|max = 2.281 at t ′ =8.542
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Figure 16. k = 0.25. Internal velocity components (ux, uy) at depth z′ = −0.2 at (a) t ′ =7.973
and (b) t ′ = 9.142. In the (x, y)-plane, the maximum velocity magnitude is |u′|max = 0.651 at
t ′ =7.973 and |u′|max =0.694 at t ′ = 9.142. The ratio of maximum |uy | to maximum |ux | is
|uy |max/|ux |max = 0.085 at t ′ = 7.973 and |uy |max/|ux |max =0.112 at t ′ = 9.142. The curve at the
+x extremity represents the cross-section of the sloping ridge.

is the largest (compare surface values in figure 13a to internal values in figure 15b).
Further examination reveals that a transition zone takes place beneath the back slope
of the wave, more precisely here at x ′ � 16.7 (t ′ =8.542) and x ′ � 17.5 (t ′ = 9.142),
between low backward accelerations and high forward accelerations. The location of
this transition zone coincides with the location of the wave crest at y ′ = ± 4, which
has not yet overturned. Our numerical results are in good qualitative agreement
with those obtained by Peregrine et al. (1980), who gave a detailed discussion of
accelerations in two-dimensional breakers. These authors also identified the region of
high accelerations as the steep front portion of the wave just below the crest, and the
region of low accelerations at the wave crest and its back.

Transverse variations of the wave kinematics are shown in figures 16 and 17
where we plot the internal velocity and acceleration components (ux, uy) and
(ax, ay), respectively, in a horizontal cross-section at depth z′ = −0.2 (�x ′

i = 0.35
and �y ′

i =0.38). The solutions at t ′ = 7.973 (near the breaking point) and t ′ = 9.142
(latest computed stage) are considered. As indicated in figure 16, the propagation
of the solitary wave is associated with a forward displacement of water beneath the
surface. The wave-induced velocity field is appreciable only in the vicinity of the wave
crest position. Velocities rapidly decay as we tend to both x extremities of the tank.
A remarkable feature is that the fluid motion remains primarily longitudinal, but
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Figure 17. k = 0.25. Internal acceleration components (ax, ay) at depth z′ = −0.2 at (a) t ′ =
7.973 and (b) t ′ =9.142. In the (x, y)-plane, the maximum acceleration magnitude is
|a′|max = 0.542 at t ′ =7.973 and |a′|max = 0.589 at t ′ = 9.142. The ratio of maximum |ay | to
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The curve at the +x extremity represents the cross-section of the sloping ridge.
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Figure 18. k = 0.25. Internal velocity components (uy, uz) at (a) t ′ = 7.973 (x ′ = 15.9) and (b)
t ′ = 9.142 (x ′ = 17.4). In the (y, z)-plane, the maximum velocity magnitude is |u′|max = 0.100
at t ′ = 7.973 and |u′|max = 0.160 at t ′ = 9.142. The ratio of maximum |uy | to maximum |uz|
is |uy |max/|uz|max = 0.301 at t ′ =7.973 and |uy |max/|uz|max = 0.357 at t ′ = 9.142. The upper and
lower curves represent the transverse profiles of the free surface and sloping ridge, respectively.
The vertical scale is exaggerated.

small transverse variations due to focusing of the flow by the ridge can be seen in
figure 16(b). While remaining relatively small, these transverse variations increase
with time. The ratio of maximum |uy | to maximum |ux | increases from
|uy |max/|ux |max =0.085 to 0.112 between t ′ = 7.973 and t ′ = 9.142.

We also observe that no significant change in the maximum of ux occurs during
the wave evolution. This suggests that the mean wave speed is almost constant and
the wave does not slow down as it travels up the sloping ridge. This result is not
really unexpected since the incident solitary wave is very energetic owing to its large
amplitude. In addition, the wave dynamics are strongly disturbed by the bottom
topography only in the middle of the tank where the slope is the steepest. The
same remarks can be made when examining the acceleration field. The transition
zone, as mentioned earlier, between small negative accelerations and large positive
accelerations is clearly indicated by a transverse dotted line in figure 17. Similar
results were obtained for horizontal cross-sections at greater depths.

Three-dimensional effects are especially conspicuous in figures 18 and 19 which
show the internal velocity components (uy, uz) and the corresponding acceleration
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Figure 19. k = 0.25. Internal acceleration components (ay, az) at (a) t ′ = 7.973 (x ′ = 15.9)
and (b) t ′ = 9.142 (x ′ = 17.4). In the (y, z)-plane, the maximum acceleration magnitude is
|a′|max = 0.343 at t ′ = 7.973 and |a′|max =0.420 at t ′ = 9.142. The ratio of maximum |ay | to
maximum |az| is |ay |max/|az|max = 0.078 at t ′ = 7.973 and |ay |max/|az|max = 0.127 at t ′ =9.142.
The upper and lower curves represent the transverse profiles of the free surface and sloping
ridge respectively. The vertical scale is exaggerated.

components (ay, az), respectively. Vertical cross-sections at x ′ = 15.9 for t ′ =7.973 and
at x ′ = 17.4 for t ′ = 9.142 are presented (�y ′

i = 0.21 and �z′
i =0.15). These locations,

which correspond roughly to the location of the wave crest at the sidewalls (y ′ = ±4 ),
are chosen to ensure a single-valued profile of the free surface along the transverse
axis. It can be seen that both velocities and accelerations exhibit quite small y- and
z-components, particularly at the early stage of breaking t ′ = 7.973. Components uz

and az also decrease rapidly with z, attaining negligible values near the bottom and
sidewalls where the depth is the greatest. This is a typical effect in shallow water,
which results from the flattening of the orbital motion of fluid particles near the
bottom.

As depicted in figure 18, the velocity field is mainly directed upward with a
dominant vertical component. Nevertheless, the maximum values of |uy | and |uz| are
found to differ only by a moderate factor (|uz|max/|uy |max = 2.803 at t ′ =9.142). The
development of wave breaking is indicated by the flow convergence above the top of
the ridge, and by the decay of velocities just beneath the surface as we tend laterally
to y ′ = 0. In the middle of the tank, a localized zone of negative uz can be identified
near the surface. Large negative values of uz are observed in this zone for t ′ = 7.973
because the vertical cross-section at x ′ =15.9 is located well behind the wave crest
(figure 18a). For t ′ = 9.142, the vertical cross-section is chosen at x ′ =17.4, which is
close to the position of maximum surface elevation. Therefore, small negative values
of uz are obtained since the flow is almost horizontal near the surface at this position
(figure 18b).

Note that the wave crest develops a lower part around y ′ = 0 as the jet of water is
projected forward and plunges down. Figure 19 shows that the acceleration field is
also predominantly vertical, but directed downward owing to the influence of gravity.
Accelerations decrease so rapidly with z that scattering by the ridge is not really
observed. As wave breaking develops, the variations of ay become more significant
with respect to az.

Overall, our calculations of surface and internal kinematics of overturning waves
are consistent in magnitude and direction with the PIV laboratory measurements
of Perlin, He & Bernal (1996), Skyner (1996) and Chang & Liu (1998), for two-
dimensional deep-water breaking waves, as well as with the Navier–Stokes (NS)
simulations of breaking waves by Chen et al. (1999), Lachaume et al. (2003) and
Biausser et al. (2004).
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Figure 20. k = 0.25. Wave profile at t ′ = 9.268 in a domain of length 19h0 and width 16h0.
The initial solitary wave is of height H ′

0 = 0.6.
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Figure 21. Bottom topography specified as a 1: 15 sloping ridge with k = 0.25 for
5.225 < x ′ < 19 and then a decaying tanh-like profile for 19 � x ′ � 24.

4.4. Sensitivity to domain size and configurations with varying incident wave heights

We examine briefly the sensitivity of computations to domain size, and present some
results for varying incident wave heights. Recall that no-flow Neumann boundary
conditions are specified at both the sides and extremities of the NWT, and so the
question arises as to whether the similarities between two- and three-dimensional
overturning waves persist when varying the size of the domain. It is also of interest
to examine the differences in wave breaking for varying incident wave heights since,
according to two-dimensional studies, this is an important factor controlling breaking
characteristics.

For a domain of the same length 19h0 as previously, but of double the width
(−8 � y ′ � 8), wave overturning computed for −2 � y ′ � 2 appears very similar to
that in the case with a smaller domain width 8h0 (compare figure 20 to figure 6c).
Vertical cross-sections through breaker jets at y ′ = 0 (not shown here) are in close
agreement. Wave behaviour at the edges in figure 20 comes within 1% of the
corresponding two-dimensional solution. We have also run simulations for even
longer domains (e.g. of length 24h0) and results (not shown here) reveal quite similar
features.

So far, all of our simulations have been conducted for solitary waves of initial height
H ′

0 = 0.6. Figures 22 and 23 show wave profiles in the latest stages of overturning
for H ′

0 = 0.3 and H ′
0 = 0.7, respectively. In both cases, the domain has the following

characteristics: width 8h0, bottom topography with a 1: 15 sloping ridge (k = 0.25).
Note, however, that a longer domain is specified for H ′

0 = 0.3 (0 � x ′ � 24), with
bottom topography as depicted in figure 21, because of the longer evolution towards
breaking in this case. For H ′

0 = 0.3, the wave crest is initially located at x ′
0 = 6.400

and the breaking point occurs at t ′
B = 10.881 for y ′ = 0, with maximum surface

elevation at (x ′
B, z′

B, z′
B/h′

B) = (18.691, 0.412, 4.029). For H ′
0 = 0.7, we have x ′

0 = 5.325,
t ′
B =7.250 and (x ′

B, z′
B, z′

B/h′
B) = (15.164, 0.782, 2.318). We can therefore obtain the

distance of propagation up to the breaking point for H ′
0 = 0.3, 0.6, 0.7 (k = 0.25)

as d ′
B = x ′

B − x ′
0 = 12.291, 10.360, 9.839, respectively. As expected, the smaller the
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Figure 22. k = 0.25. Wave profile at t ′ = 11.523 for a ‘Tanaka’ solitary wave of initial height
H ′

0 = 0.3. The domain is of length 24h0 and width 8h0.
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Figure 23. k = 0.25. Wave profile at t ′ =8.477 for a ‘Tanaka’ solitary wave of initial height
H ′

0 = 0.7. The domain is of length 19h0 and width 8h0.

initial wave amplitude, the longer it takes for breaking to develop. For H ′
0 = 0.7,

wave breaking characteristics are similar to those for H ′
0 = 0.6 with k = 0.17. Small-

amplitude waves evolve more slowly towards breaking than large-amplitude waves,
but their shape seems to be more affected by the bottom topography. Indeed, the
breaker height ratio for H ′

0 = 0.3 is almost twice as large as that for H ′
0 = 0.7. This

may be related to the fact that, since breaking of small waves occurs further up the
beach, there is more time for refraction and focusing of wave energy towards the
centre.

In figure 24, we show the transverse variation of the ridge geometry and that of the
wave crest at the breaking point x ′ = x ′

B , for H ′
0 = 0.3, 0.6 and 0.7. These variations

are correlated to some extent. In particular, for H ′
0 = 0.3, there is a relatively strong

focusing of the wave at the breaking point, which occurs in the shallowest water,
near the maximum elevation of the ridge in figure 24(a). By contrast, for H ′

0 = 0.7, the
breaking point occurs in deeper water and wave focusing is so weak that it is hardly
noticeable in figure 24 (c). Specifically, for H ′

0 = 0.3, the relative difference in surface
elevation between y ′ =0 and y ′ = ± 4 is 32%, while it is only 4% for H ′

0 = 0.7.

5. Conclusions
The three-dimensional NWT of Grilli et al. (2001), based on an accurate BEM and

an efficient time-stepping scheme, has been used to investigate physical aspects of
the shoaling and overturning of solitary waves over a sloping ridge with a lateral
modulation.

The three-dimensional aspects of the problem have been examined by varying
the transverse geometry of the bottom, the domain size and incident wave height.
A detailed analysis of the dynamics and kinematics (both on the free surface and
within the flow) of plunging breakers has been performed. We have observed three-
dimensional effects on wave profiles and surface kinematics similar to those observed
by Xue et al. (2001) for periodic overturning waves in deep water. The transverse
variation of the bottom turns out to be an important factor controlling the geometry
and type of breaking.
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Figure 24. k = 0.25. Front view of wave (upper panel) and bottom (lower panel) profiles at the
breaking point for (a) H ′

0 = 0.3 (t ′
B =10.881, x ′

B = 18.691), (b) H ′
0 = 0.6 (t ′

B = 7.890, x ′
B = 16.093)

and (c) H ′
0 = 0.7 (t ′

B = 7.250, x ′
B = 15.164).

Comparisons between two- and three-dimensional results for similar parameters
have also been carried out. Overall, corresponding wave profiles at y ′ = 0 are found to
be nearly identical, particularly near the plunging jet, but breaking occurs for slightly
different times and x-locations in two and three dimensions. Everything else being
equal, breaking takes more time to develop in the three-dimensional geometry than it
does in the two-dimensional one. Moreover, our results for maximum particle velocity
(∼ 2c) and acceleration (∼ 5–6g) computed on the free surface are consistent with the
two-dimensional results reported by New et al. (1985) and Dommermuth et al. (1988)
for finite and infinite depth breakers, as well as with the three-dimensional results of
Xue et al. (2001) for periodic breakers over infinite depth. Such similarities in near jet
shape and dynamics of two- and three-dimensional plunging breakers seem to indicate
that the flow near breaking jets, in the latest stages of wave overturning, becomes
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almost independent of the background flow and boundary conditions (including
bottom topography), that have induced breaking.

Although the present NWT is not capable of describing wave motion beyond
the impact of the plunging jet on the free surface, it can be used to initialize
accurately wave kinematics and pressure close to the breaking point in numerical
models solving full NS equations (e.g. using volume of fluid (VOF) methods for
the interface reconstruction and tracking). Usually, NS models are computationally
very costly (particularly in three dimensions) and suffer from numerical diffusion,
leading to artificial loss of energy over long distances of wave propagation. These
can nevertheless realistically simulate the splash-up phenomenon, as reported in
recent studies of two-dimensional breaking waves by Lin & Liu (1998) and Chen
et al. (1999). Chen et al. (1999) performed direct simulations of NS equations, while
Lin & Liu (1998) solved the Reynolds-averaged NS equations, together with a k–ε

turbulent transport equation. A promising development seems to be the coupling of
BEM and VOF methods for pre- and post-breaking waves, respectively, as done by
Guignard et al. (1999) and Lachaume et al. (2003) in two dimensions, and Biausser
et al. (2004) in three dimensions.

Finally, the use of a fast multipole algorithm to reduce the computational effort in
the BEM has been proposed by Fochesato & Dias (2004) and applied to this NWT;
this seems a promising way to make large-scale problems even more tractable.
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